Jump to content

Mathematics

Wikipedia se
Ii papyrus rhind se puraana Egypt me mathematics ke jaankari mile hae

Mathematics (jiske chhota kar ke "maths" nai to "math" bola jaae hae), ginti (number), dhaancha (shape) aur namuuna (pattern) ke adhyan hae. Ii sabd Greek μάθημα (máthema) se aais hae, jiske matlab vigyan, gyaan, nai to sikhnaa hae.

Mathematics me adhyan karaa jaae hae:

  • Ginti: jisme chij ke kaise gina jaae, bhi hae.
  • Dhaancha (structure):chij ke kaise bandobast (organize) karaa gais hae, lekin ii bhi ki ii kaise rahaa hoi. Iske jaada kar ke algebra bola jaae hae.
  • Place: jahaan chij hae, ii kaise arrange karaa gais, jisme iske dhaancha ke arrangement bhi hae. Iske jaada kar ke geometry bola jaae hae.
  • Change: kaise chij ke biich me antar (difference) hae. Iske jaada kae ke Mathematical analysis bola jaae hae.

Applied math, asli dunia me problem ke solve kare me kaamil (useful) hae. Jon log business, vigyan, engineering aur construction me kaam kare hae, mathematics ke kaam me laae hae.[1][2]

Mathematics me samasya ke suljhaana (problem solving)

[badlo | source ke badlo]

Mathematics, logic ke kaam me laae ke samasya ke sulghae hae.Ek khaas aujaar jiske mathematician log kaam me laae hae, deduction. Deduction me puraana sachchaai ke kaam me laae ke nawaa sachchaai ke khoja jaae hae. Deduction ke kaam me laana, uu chij hae jon mathematics ke duusra rakam ke vigyanik soch (scientific thinking) se different hae, kaaheki usme experiment nai to interview pe nirbhar rahaa jaae hae.[3]

Mathematician log logic aur reasoning ke kaam me laae ke general niyam (rule) banae hae, jon mathematics ke khaatir jaruri hae. Ii niyam uu jaankari ke nikaal de hai jon jaruri nai hae, tab ek niyam dher haalaat me kaam me laawa jaae sake hae. General niyam ke paae se, mathematicians dher samasya ke suljhaae sake hae, kaaheki ii niyam duusra samaya me bhi kaam me laawa jaae sake hae.[4] Ii niyam ke theorem bola jaae hae (agar iske saabit kar dewa gais hae), nai to conjecture bola jaae hae.[5] Jaada mathematicians non-logical aur creative reasoning ke kaam me laae ke logical proof ke paae hae.[6]

Areas of study in mathematics

[badlo | source ke badlo]
Mathematics me ginti aur quantities ke adhyan karaa jaae hae. Ii vigyan ke ek hissa hae jisme logic of shape, quantity, aur arrangement hae. Niche dewa gais areas ke mathematics ke dher field me adhyan karaa jaae hae, jisme set theory aur mathematical logic hae. Number theory ke adhyan jaada kar ke integer ke structure aur behavior ke adhyan kare hae .
Natural numbers Integers Rational numbers Real numbers Complex numbers
Ordinal numbers Cardinal numbers Arithmetic operations Arithmetic relations Functions, see also special functions

Structure

[badlo | source ke badlo]
Structural mathematics objects' and constructions' ke shape aur integrity ke adhyan kare hae. Isme algebra aur calculus hae.
Number theory Abstract algebra Linear algebra Order theory Graph theory
Mathematics ke kuchh hussa chij ke dhaancha ke adhyan kare hae, Ii sab jaada kar ke geometry ke adhuan ke hissa hae.
Topology Geometry Trigonometry Differential geometry Fractal geometry
Some areas of mathematics study the way things change. Most of these areas are part of the study of analysis.
Calculus Vector calculus Analysis
Differential equations Dynamical systems Chaos theory
  1. "Thinking of a Career in Applied Mathematics? | SIAM". www.siam.org (in English). Retrieved 2018-07-30.
  2. Wigner, Eugene (February 1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications in Pure and Applied Mathematics 13 (1): 1–14. doi:10.1002/cpa.3160130102. Archived from the original on 2018-08-10. https://web.archive.org/web/20180810073503/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html. Retrieved 2018-08-07.
  3. "The science checklist applied: Mathematics". undsci.berkeley.edu. Retrieved 2018-08-05.
  4. "The Role of Generalization in the Advanced Mathematical Thinking", AMS Grad Blog, 2016-08-21. (in en-US)
  5. Houston, Kevin (2009). How to Think Like a Mathematician. Cambridge University Press. p. 99. ISBN 978-0-521-71978-0. https://archive.org/details/howtothinklikema00hous_005.
  6. Thurston, William (April 1994). "On proof and progress in mathematics". Bulletin of the American Mathematical Society 30 (2): 161–177. doi:10.1090/S0273-0979-1994-00502-6.